stichting mathematisch centrum

AFDELING TOEGEPASTE WISKUNDE TW

TW 128/71

AUGUST

H. BAVINCK ON POSITIVE CONVOLUTION OPERATORS FOR JACOBI SERIES

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

On positive convolution operators for Jacobi series

ъу

Herman Bavinck Mathematisch Centrum, Amsterdam

1. Introduction

- 1.1. In a preceding paper [2] the author has started the study of approximation of functions by processes, which are generated by the use of summability methods for the expansion of the functions in terms of Jacobi polynomials. The summability methods can be interpreted as convolution operators, if the convolution structure for Jacobi series, defined by Askey and Wainger [1], is used. By means of some general theorems on approximation processes in Banach spaces, (Berens [3]), it is possible to characterize the saturation class and the classes of non-optimal approximation of a number of classical summability methods for the summation of the Fourier-Jacobi series. This paper deals with saturation of positive convolution operators and the main part is a theorem of the Tureckii [10] - DeVore [4] type, which determines the saturation order and the saturation class of a sequence of positive convolution operators, satisfying a special condition on the Fourier-Jacobi coefficients of the kernel. The proof is a straightforward generalization of DeVore's proof in the case of Fourier series. As applications, the saturation class of the higher order Jackson kernel and some other positive kernels are characterized.
- 1.2. We introduce same Banach spaces of complex valued functions on the interval [-1,1]. We write C for the space of continuous functions, L^{∞} denotes the space of essentially bounded functions and we define the L^{p} spaces with respect to the weight function (x = cos θ)

$$(1.1) \qquad \rho^{(\alpha,\beta)}(\theta) = \left(\sin\frac{\theta}{2}\right)^{2\alpha+1} \left(\cos\frac{\theta}{2}\right)^{2\beta+1} \qquad (\alpha \ge \beta \ge -\frac{1}{2}).$$

We call M the space of all regular finite Borel measures on [-1,1]. The

spaces C, L^p (1 \leq p \leq ∞) and M are Banach spaces if endowed with the following norms

$$\begin{aligned} \left| \left| \mathbf{f} \right| \right|_{C} &= \sup_{0 \le \theta \le \pi} \left| \mathbf{f}(\cos \theta) \right|, \\ \left| \left| \mathbf{f} \right| \right|_{p} &= \left[\int_{0}^{\pi} \left| \mathbf{f}(\cos \theta) \right|^{p} \rho^{(\alpha, \beta)}(\theta) d\theta \right]^{1/p} \qquad (1 \le p < \infty), \\ \left| \left| \mathbf{f} \right| \right|_{\infty} &= \exp_{0 \le \pi} \sup_{0 \le \theta \le \pi} \left| \mathbf{f}(\cos \theta) \right|, \\ \left| \left| \mu \right| \right|_{M} &= \int_{0}^{\pi} \left| d\mu(\cos \theta) \right|. \end{aligned}$$

With elements of these Banach spaces we can associate an expansion in terms of Jacobi polynomials. If $P_n^{(\alpha,\beta)}(x)$ is written for the Jacobi polynomial of degree n and order (α,β) (see Szegö [9]), the functions

$$R_{n}^{(\alpha,\beta)}(\cos \theta) = \frac{P_{n}^{(\alpha,\beta)}(\cos \theta)}{P_{n}^{(\alpha,\beta)}(1)}$$

satisfy

(1.2)
$$\int_{0}^{\pi} R_{n}^{(\alpha,\beta)}(\cos \theta) R_{m}^{(\alpha,\beta)}(\cos \theta) \rho^{(\alpha,\beta)}(\theta) d\theta = \delta_{n,m} [\omega_{n}^{(\alpha,\beta)}]^{-1}.$$

Here,

$$(1.3) \quad \omega_{n}^{(\alpha,\beta)} = \frac{(2n+\alpha+\beta+1)\Gamma(n+\alpha+\beta+1)\Gamma(n+\alpha+1)}{\Gamma(n+\beta+1)\Gamma(n+1)\Gamma(\alpha+1)\Gamma(\alpha+1)} = O(n^{2\alpha+1}) \quad (n\to\infty).$$

With f belonging to one of the spaces C or L^p (1 \leq p \leq ∞) we associate the Fourier-Jacobi expansion

(1.4)
$$f(\cos \theta) \sim \sum_{n=0}^{\infty} f^{\Lambda}(n) \omega_n^{(\alpha,\beta)} R_n^{(\alpha,\beta)}(\cos \theta),$$

where

(1.5)
$$f^{\Lambda}(n) = \int_{0}^{\pi} f(\cos \theta) R_{n}^{(\alpha,\beta)}(\cos \theta) \rho^{(\alpha,\beta)}(\theta) d\theta \quad (n=0,1,...).$$

With a measure μ ϵ M we associate the Jacobi-Stieltjes expansion

(1.6)
$$d\mu(\cos\theta) \sim \sum_{n=0}^{\infty} \mu^{V}(n) \omega_{n}^{(\alpha,\beta)} R_{n}^{(\alpha,\beta)}(\cos\theta),$$

where

(1.7)
$$\mu^{\vee}(n) = \int_{0}^{\pi} R_{n}^{(\alpha,\beta)}(\cos\theta) d\mu(\cos\theta) \qquad (n=0,1,...).$$

Askey and Wainger [1] have introduced a generalized translation operator $T_{\rm A}$, which maps a function f with (1.4) into

(1.8)
$$T_{\phi} f(\cos \theta) \sim \sum_{n=0}^{\infty} f^{(n)} \omega_n^{(\alpha,\beta)} R_n^{(\alpha,\beta)}(\cos \theta) R_n^{(\alpha,\beta)}(\cos \phi),$$

and Gasper [5] has shown the positivity of this operator. This implies that T_{ϕ} has an operator norm 1. If $f_1, f_2 \in L^1$, then the convolution $f_1 * f_2$ is defined by

$$(1.9) \qquad (f_1 * f_2)(\cos \theta) = \int_0^{\pi} T_{\phi} f_1(\cos \theta) f_2(\cos \phi) \rho^{(\alpha,\beta)}(\phi) d\phi.$$

This convolution has the usual properties (see Gasper [5]). If $f \in L^p$ (1 $\leq p \leq \infty$) and $\mu \in M$ we can define the convolution $f * d\mu$ by

(1.10)
$$(f*d\mu)(\cos \theta) = \int_{0}^{\pi} T_{\phi} f(\cos \theta) d\mu(\cos \phi).$$

Moreover, f * d μ ϵ L p and the following inequality holds

(1.11)
$$||f*d\mu||_{p} \le ||f||_{p} ||\mu||_{M^{\bullet}}$$

1.3. In the rest of this paper X is written for one of the spaces C or L^p (1 \leq p < ∞). Assume that we are given a sequence $\{L_n\}$ of positive convolution operators, that is, L_n has the form

$$(1.12) \quad L_{\mathbf{n}}(\mathbf{f};\cos \theta) = (\mathbf{f}*d\mu_{\mathbf{n}})(\cos \theta) = \int_{0}^{\pi} T_{\phi} \mathbf{f}(\cos \theta) d\mu_{\mathbf{n}}(\cos \phi) \qquad (\mathbf{f} \in \mathbf{X}).$$

where μ_n (n=1,2,...) are non-negative elements of M with $\int_0^\pi d\mu_n(\cos\phi) = 1$.

We say that the sequence $\{L_n\}$ is saturated if there exists a non-increasing sequence of positive numbers $\{\phi(n)\}$ with $\lim_{n\to\infty}\phi(n)=0$, such that

i)
$$||f-L_n(f)||_X = o(\phi(n))$$
 $(n\to\infty)$

if and only if f belongs to some "trivial" subspace of X and

ii) there is a "non-trivial" element
$$f_0 \in X$$
 satisfying
$$\big| \big| f_0 - L_n(f_0) \big| \big|_X = O(\phi(n))$$
 (n\rightarrow).

The sequence $\{\phi(n)\}$ is then called the saturation order and the set $F(X,L_n)$, which consists of all the elements of X which satisfy ii, is called the saturation class or Favard class of L_n .

In this paper we shall prove a theorem, in which the behavior of the second trigonometric moment

(1.13)
$$T(\mu_{n};2) = \int_{0}^{\pi} (\sin \frac{\theta}{2})^{2} d\mu_{n}(\cos \theta)$$

determines the saturation of $\{L_n\}$. In section 2 we give some inequalities for Jacobi polynomials and we investigate the relationship between Jacobi coefficients and trigonometric moments. Then, following DeVore [4], we introduce the following conditions:

A. There exists a constant $C_A > 0$ such that for each integer k there is an N(k) for which

$$\frac{1 - \mu_n^{\mathsf{V}}(k)}{1 - \mu_n^{\mathsf{V}}(1)} \ge C_{\mathsf{A}} \ k(k + \alpha + \beta + 1) \qquad \qquad \text{for } n > N(k).$$

B. There exists a constant $C_B > 0$ such that for each $\epsilon > 0$ there is an $N(\epsilon)$ such that

$$\int_{0}^{\varepsilon} (\sin \frac{\theta}{2})^{2} d\mu_{n}(\cos \theta) \geq C_{B} \int_{0}^{\pi} (\sin \frac{\theta}{2})^{2} d\mu_{n}(\cos \theta) \qquad \text{for } n > N(\varepsilon).$$

In section 3 we shall prove

1.4. Lemma. The conditions A and B are equivalent.

We define the Lipschitz classes with respect to the generalized translation operator by

$$(1.14) \operatorname{Lip}(\gamma,X) = \{f \in X : \exists c > 0, \sup_{0 \le \psi \le \phi} ||T_{\psi}f - f||_{X} \le c\phi^{\gamma}\}, \quad (0 < \gamma \le 2).$$

We now state the following theorem that will be proved in section 4.

1.5. Theorem. If $\{L_n\}$ is a sequence of operators of the form (1.12) and if either condition A or condition B is satisfied, then $\{L_n\}$ is saturated with order $(1-\mu_n^V(1))$ and the saturation class $F(X,L_n)$ is Lip(2,X).

The Jacobi polynomials $R_n^{(\alpha,\beta)}(\cos\theta)$ satisfy the following differential equation:

$$(1.15) - \frac{1}{\rho(\alpha,\beta)(\theta)} \frac{d}{d\theta} \left\{ \rho^{(\alpha,\beta)}(\theta) \frac{d}{d\theta} R_n^{(\alpha,\beta)}(\cos\theta) \right\} = n(n+\alpha+\beta+1) R_n^{(\alpha,\beta)}(\cos\theta).$$

If for $f \in X$ with the expansion (1.4) there exists an element $Af \in X$ such that

(1.16) Af
$$\sim \sum_{n=0}^{\infty} n(n+\alpha+\beta+1) f^{(n)} \omega_n^{(\alpha,\beta)} R_n^{(\alpha,\beta)}(\cos\theta),$$

then we say that $f \in D(A)$ and we call A the operator which maps D(A) into X by $f \to Af$. The operator is the realization in X of the differential operator

$$-\frac{1}{\rho^{(\alpha,\beta)}(\theta)}\frac{d}{d\theta}\left\{\rho^{(\alpha,\beta)}(\theta)\frac{d}{d\theta}\right\}$$

with boundary contitions $\frac{d}{d\theta}=0$ at $\theta=0$ and π , as follows from (1.15). Löfström and Peetre [7] have shown the close connection between the generalized translation operator T_{φ} and the operator A. In fact, for $f \in D(A)$ the following relations hold:

(1.17)
$$\left|\left|T_{\phi}f-f\right|\right|_{X} \leq C_{1}(\phi) \left|\left|Af\right|\right|_{X},$$

(1.18)
$$\lim_{\phi \to 0^+} \left| \left| \frac{f - T_{\phi}f}{C_1(\phi)} - Af \right| \right|_X = 0,$$

where

(1.19)
$$C_{1}(\phi) = \int_{0}^{\phi} \frac{1}{\rho^{(\alpha,\beta)}(\theta)} \left(\int_{0}^{\theta} \rho^{(\alpha,\beta)}(\tau) d\tau \right) d\theta,$$

(see Bavinck [2], section 4). Moreover,

(1.20)
$$\lim_{\phi \to 0^+} \frac{C_1(\phi)}{\sin^2 \frac{\phi}{2}} = \frac{1}{\alpha + 1}$$

and, since for $0 < \phi \le \frac{\pi}{2}$, $\frac{\sqrt{2}}{2} \le \cos \frac{\phi}{2} \le 1$ we have

$$C_{1}(\phi) \leq \int_{0}^{\phi} \frac{1}{\rho(\alpha,\beta)(\theta)} \int_{0}^{\theta} (\sin \frac{\tau}{2})^{2\alpha+1} \cos \frac{\tau}{2} d\tau d\theta$$

$$\leq \frac{1}{\alpha+1} \int_{0}^{\phi} \frac{\sin \frac{\theta}{2}}{(\cos \frac{\theta}{2})^{2\beta+1}} d\theta$$

$$\leq \frac{2^{\beta+1}}{\alpha+1} \sin^{2} \frac{\phi}{2} \qquad 0 < \phi \leq \frac{\pi}{2}.$$

Notation: We will use the notation $a_n \approx b_n \ (n \to \infty)$ if there are positive numbers c_1 and c_2 such that $c_1 a_n \leq b_n \leq c_2 a_n$.

2. Some relations for Jacobi polynomials

2.1. Inequalities

We shall first prove the following inequaltities for Jacobi polynomials $R_k^{(\alpha,\beta)}(x).$ Let k be a natural number. Then

$$(2.1) \quad 1 - R_k^{(\alpha,\beta)}(\cos \theta) \leq \frac{k(k+\alpha+\beta+1)}{\alpha+1} \sin^2 \frac{\theta}{2} \qquad (0 \leq \theta \leq \pi).$$

There exists a constant $c_{\alpha} > 0$, such that for $0 < \epsilon < 4/2k+\alpha+\beta+2$

$$(2.2) \quad c_{\alpha} \frac{k(k+\alpha+\beta+1)}{\alpha+1} \sin^{2} \frac{\theta}{2} \leq 1 - R_{k}^{(\alpha,\beta)}(\cos \theta) \qquad (0 \leq \theta \leq \epsilon).$$

By the differentiation formula

$$\frac{\mathrm{d}}{\mathrm{d}x} \, R_{k}^{(\alpha,\beta)}(x) = \frac{k(k+\alpha+\beta+1)}{2(\alpha+1)} \, R_{k-1}^{(\alpha+1,\beta+1)}(x)$$

we obtain from the mean-value theorem

$$(2.3) \quad 1 - R_{\mathbf{k}}^{(\alpha,\beta)}(\cos \theta) = \frac{\mathbf{k}(\mathbf{k}+\alpha+\beta+1)}{(\alpha+1)} \sin^2 \frac{\theta}{2} R_{\mathbf{k}-1}^{(\alpha+1,\beta+1)}(\cos \overline{\theta}), \ 0 \leq \overline{\theta} \leq \theta.$$

Since
$$|R_{k-1}^{(\alpha+1,\beta+1)}(\cos \bar{\theta})| \le 1$$
, $0 \le \bar{\theta} \le \pi$, formula (2.1) follows.

For the proof of (2.2) we use Hilb's formula (Szegő [9], (8,21.12) for large n

$$(\sin \frac{\theta}{2})^{\alpha} (\cos \frac{\theta}{2})^{\beta} R_{n}^{(\alpha,\beta)} (\cos \theta) = N^{-\alpha} \Gamma(\alpha+1)(\theta/\sin \theta)^{\frac{1}{2}} J_{\alpha}(N\theta)$$

$$+ \begin{cases} \theta^{\frac{1}{2}} O(n^{-3/2-\alpha}), & \text{if } cn^{-1} \leq \theta \leq \pi-\epsilon, \\ \theta^{\alpha+2} O(1), & \text{if } 0 < \theta \leq cn^{-1}, \end{cases}$$

where $N = n + (\alpha + \beta + 1)/2$.

The power series expansion of $(\frac{z}{2})^{-\alpha}$ J_{α}(z) has terms with alternating sign, and monotonically decreasing for real z, 0 < z < 2. Hence we have

$$R_{n-1}^{(\alpha+1,\beta+1)}(\cos\theta) \ge \Gamma(\alpha+2)(\frac{2}{N\theta})^{\alpha+1} J_{\alpha+1}(N\theta) + \theta^2 O(1) \qquad 0 \le \theta < 2N^{-1}$$

(2.4)
$$\geq 1 - \frac{(\frac{\mathbb{N}\theta}{2})^2}{\alpha + 2} + \theta^2 \text{ O}(1)$$

$$> \frac{\alpha + 1}{\alpha + 2} - O(N^{-2}).$$

The inequality (2.2) follows from (2.3) and (2.4) for $k \ge k_0$. On the other hand, the constant c_{α} can be chosen in such a way, that (2.2) remains valid for $k \le k_0$.

2.2. Relations between trigonometric moments and Jacobi coefficients

The following expansion is a simple consequence of Rodrigues' formula (see also Szegő [9], formula (9.3.11)).

$$(2.5) \left(\sin \frac{\theta}{2}\right)^{2\sigma} =$$

$$= \frac{\Gamma(\sigma+1)\Gamma(\sigma+\alpha+1)}{\Gamma(\alpha+1)} \sum_{n=0}^{\sigma} (-1)^n \frac{(2n+\alpha+\beta+1)\Gamma(n+\alpha+\beta+1)}{\Gamma(\sigma-n+1)\Gamma(n+\alpha+\beta+\sigma+2)\Gamma(n+1)} R_n^{(\alpha,\beta)}(\cos \theta)$$

$$(\sigma=1,2,...).$$

From the expression of the Jacobi polynomials in terms of hypergeometric functions

$$R_n^{(\alpha,\beta)}(\cos\theta) = {}_2F_1(-n,n+\alpha+\beta+1);\alpha+1;\sin^2\frac{\theta}{2})$$

we easily derive

$$(2.6) 1 - R_n^{(\alpha,\beta)}(\cos\theta) =$$

$$= \sum_{k=1}^{n} (-1)^{k+1} \frac{\Gamma(n+\alpha+\beta+k+1)\Gamma(n+1)\Gamma(\alpha+1)}{\Gamma(n-k+1)\Gamma(n+\alpha+\beta+1)\Gamma(k+\alpha+1)\Gamma(k+1)} \sin^{2k} \frac{\theta}{2}.$$

If the trigonometric moment of order 2σ ($\sigma=1,2,...$) is defined by

$$T(\mu_n; 2\sigma) = \int_{0}^{\pi} (\sin \frac{\theta}{2})^2 d\mu_n(\cos \theta),$$

we obtain by (2.5), noticing the value of (2.5) at $\theta = 0$,

(2.7)
$$T(\mu_n; 2\sigma) =$$

$$=\frac{\Gamma(\sigma+1)\Gamma(\sigma+\alpha+1)}{\Gamma(\alpha+1)}\sum_{k=1}^{\sigma}(-1)^{k+1}\frac{(2k+\alpha+\beta+1)\Gamma(k+\alpha+\beta+1)}{\Gamma(\sigma-k+1)\Gamma(k+\alpha+\beta+\sigma+2)\Gamma(k+1)}(1-\mu_{n}^{\vee}(k)).$$

On the other hand (2.6) leads to

(2.8) 1 -
$$\mu_n^{V}(k) =$$

$$= \frac{\Gamma(k+1)\Gamma(\alpha+1)}{\Gamma(k+\alpha+\beta+1)} \sum_{\sigma=1}^{k} (-1)^{\sigma+1} \frac{\Gamma(k+\alpha+\beta+\sigma+1)}{\Gamma(k-\sigma+1)\Gamma(\sigma+\alpha+1)\Gamma(\sigma+1)} T(\mu_n; 2\sigma).$$

Hence, we easily derive from (2.7)

(2.9)
$$T(\mu_n; 2) = \frac{\alpha + 1}{\alpha + \beta + 2} (1 - \mu_n^{V}(1))$$

and

$$(2.10) \quad \frac{T(\mu_{n}; 4)}{T(\mu_{n}; 2)} = \frac{(\alpha+2)(\alpha+\beta+2)}{(\alpha+\beta+3)(\alpha+\beta+4)} \left[\frac{2(\alpha+\beta+3)}{\alpha+\beta+2} - \frac{1-\mu_{n}^{V}(2)}{1-\mu_{n}^{V}(1)} \right].$$

From (2.8) and (2.9) we conclude

$$(2.11) \frac{1 - \mu_n^{\vee}(k)}{1 - \mu_n^{\vee}(1)} =$$

$$\frac{k(k+\alpha+\beta+1)}{\alpha+\beta+2} - \frac{\Gamma(k+1)\Gamma(\alpha+2)}{(\alpha+\beta+2)\Gamma(k+\alpha+\beta+1)} \sum_{\sigma=2}^{k} (-1)^{\sigma} \frac{\Gamma(k+\alpha+\beta+\sigma+1)}{\Gamma(k-\sigma+1)\Gamma(\sigma+\alpha+1)\Gamma(\sigma+1)} \frac{T(\mu_{n};2\sigma)}{T(\mu_{n};2)}.$$

Similar relations between trigonometric moments and Fourier coefficients have been established by Stark [8]. We also have the following theorem,

which generalizes a result of Görlich and Stark [6] (see also Stark [8]).

2.3. Theorem. For a sequence $\{L_n\}$ of positive convolution operators of the form (1.12) the following assertions are equivalent:

(a)
$$\lim_{n\to\infty} \frac{1 - \mu_n^{V}(k)}{1 - \mu_n^{V}(1)} = \frac{k(k+\alpha+\beta+1)}{\alpha+\beta+2}$$
 (k=1,2,...),

(b)
$$\lim_{n\to\infty} \frac{1 - \mu_n^{V}(2)}{1 - \mu_n^{V}(1)} = \frac{2(\alpha + \beta + 3)}{\alpha + \beta + 2} ,$$

(c)
$$\lim_{n\to\infty} \frac{T(\mu_n; 4)}{T(\mu_n; 2)} = 0.$$

Proof. Relation (b) is a trivial consequence of (a). Relation (c) follows from (b) by (2.10). Since $0 \le \sin^2 \frac{\theta}{2} \le 1$ and the measures μ_n are positive it is obvious that

$$T(\mu_n; 2\sigma) \leq T(\mu_n; 4)$$
 for $\sigma \geq 2$.

Therefore relation (c) implies that $\lim_{n\to\infty}\frac{T(\mu_n;2\sigma)}{T(\mu_n;2)}=0$, $\sigma\geq 2$. Thus, by formula (2.11) relation (a) follows.

3. Proof of lemma 1.4.

We first show that B implies A. If we take $\varepsilon < \frac{4}{2k+\alpha+\beta+2}$ and N(ε) as given in B, we have using (2.2) and (2.9) for n > N(ε)

$$1 - \mu_{n}^{V}(k) = \int_{0}^{\pi} (1 - R_{k}^{(\alpha,\beta)}(\cos\theta) d\mu_{n}(\cos\theta)$$

$$\geq \int_{0}^{\varepsilon} (1 - R_{k}^{(\alpha,\beta)}(\cos\theta)) d\mu_{n}(\cos\theta)$$

$$\geq c_{\alpha} \frac{k(k+\alpha+\beta+1)}{\alpha+1} \int_{0}^{\varepsilon} \sin^{2}\frac{\theta}{2} d\mu_{n}(\cos\theta)$$

$$\geq c_{\alpha} \frac{k(k+\alpha+\beta+1)}{\alpha+1} C_{B} \int_{0}^{\pi} \sin^{2}\frac{\theta}{2} d\mu_{n}(\cos\theta)$$

$$= \frac{c_{\alpha}C_{B}}{\alpha+\beta+2} k(k+\alpha+\beta+1) (1 - \mu_{n}^{V}(1)).$$

Therefore, A holds with $N(k) = N(\epsilon)$ and $C_A = \frac{c_{\alpha}^{C}B}{\alpha + \beta + 2}$.

We will now show that A implies B with $C_B = C_A \frac{(\alpha+\beta+2)}{2}$. Suppose B does not hold for $C_B = C_A \frac{(\alpha+\beta+2)}{2}$, then there is an $\epsilon_0 > 0$ and a sequence (n_j) such that

$$(3.1) \int_{0}^{\epsilon_{0}} \sin^{2} \frac{\theta}{2} d\mu_{n_{j}}(\cos \theta) < C_{\hat{A}} \frac{(\alpha+\beta+2)}{2} \int_{0}^{\pi} \sin^{2} \frac{\theta}{2} d\mu_{n_{j}}(\cos \theta), \quad j=1,2,....$$

We consider the measures

$$v_{n,j}(\cos \theta) = \begin{cases} 0, & 0 \leq \theta < \epsilon_0, \\ \frac{1}{T(\mu_{n,j};2)} \mu_{n,j}(\cos \theta), & \epsilon_0 \leq \theta \leq \pi. \end{cases}$$

Then
$$\int_{0}^{\pi} d\nu_{\mathbf{n}j}(\cos\theta) \leq \frac{1}{\sin^{2}\frac{\varepsilon_{0}}{2}} \frac{1}{T(\mu_{\mathbf{n}j};2)} \int_{0}^{\pi} \sin^{2}\frac{\theta}{2} d\mu_{\mathbf{n}j}(\cos\theta) = \frac{1}{\sin^{2}\frac{\varepsilon_{0}}{2}}.$$

By the weak compactness of a closed sphere in M there exists a subsequence $(n'_j) \subseteq (n_j)$ and a measure ν such that $\nu_{n'_j}$ converges weak to ν . In particular we have for each k (k=1,2,...)

$$\lim_{\substack{n,j\to\infty\\ j}} \int_{0}^{\pi} \left\{1-R_{k}^{(\alpha,\beta)}(\cos\theta)\right\} d\nu_{n,j}(\cos\theta) = \int_{0}^{\pi} \left\{1-R_{k}^{(\alpha,\beta)}(\cos\theta)\right\} d\nu \leq 2 \int_{0}^{\pi} d\nu.$$

Choose k o so large that

(3.2)
$$\frac{C_{A} k_{0}(k_{0}+\alpha+\beta+1)(\alpha+\beta+2)}{4(\alpha+1)} \geq \int_{0}^{\pi} d\nu.$$

Then there exists an N such that for $n! \geq N$

$$\frac{1}{T(\mu_{n_{j}};2)} \int_{0}^{\epsilon_{0}} \{1-R_{k_{0}}^{(\alpha,\beta)}(\cos\theta)\} d\mu_{n_{j}}^{\epsilon_{j}}(\cos\theta) = \frac{1}{T(\mu_{n_{j}};2)} \int_{0}^{\pi} \{1-R_{k_{0}}^{(\alpha,\beta)}(\cos\theta)\} d\mu_{n_{j}}^{\epsilon_{j}}(\cos\theta) - \int_{0}^{\pi} \{1-R_{k_{0}}^{(\alpha,\beta)}(\cos\theta)\} d\nu_{n_{j}}^{\epsilon_{j}}(\cos\theta)$$

$$\geq \frac{1}{T(\mu_{n_{j}};2)} \int_{0}^{\pi} \{1-R_{k_{0}}^{(\alpha,\beta)}(\cos\theta)\} d\mu_{n_{j}}^{\epsilon_{j}}(\cos\theta)$$

$$- \frac{C_{A} k_{0}(k_{0}+\alpha+\beta+1)(\alpha+\beta+2)}{2(\alpha+1)}.$$

By virtue of condition A we have for $n_j^* \ge \max(N, N(k_0))$

$$\int_{0}^{\varepsilon_{0}} \{1-R_{k_{0}}^{(\alpha,\beta)}(\cos\theta)\} d\mu_{n_{j}}^{(\cos\theta)}(\cos\theta) \ge$$

$$\geq C_{A} k_{0}^{(k_{0}+\alpha+\beta+1)} \frac{(\alpha+\beta+2)}{2(\alpha+1)} \int_{0}^{\pi} \sin^{2}\frac{\theta}{2} d\mu_{n_{j}}^{(\cos\theta)}(\cos\theta).$$

Finally, by (2.1) we have

$$\int_{0}^{\varepsilon_{0}} \sin^{2} \frac{\theta}{2} d\mu_{n;j}(\cos \theta) \geq \frac{(\alpha+1)}{k_{0}(k_{0}+\alpha+\beta+1)} \int_{0}^{\varepsilon_{0}} \{1-R_{k_{0}}^{(\alpha,\beta)}(\cos \theta)\} d\mu_{n;j}(\cos \theta)$$

$$\geq C_{A} \frac{(\alpha+\beta+2)}{2} \int_{0}^{\pi} \sin^{2} \frac{\theta}{2} d\mu_{n;j}(\cos \theta),$$

which is a contradiction to (3.1) and proves lemma 1.4.

4. Proof of theorem 1.5

Let $\{L_n\}$ be a sequence of positive linear operators of the form (1.12) which satisfy either condition A or B. On account of lemma 1.4 both conditions A and B are satisfied and we will interchange them appropriately.

We first show that $\{L_n^{}\}$ is saturated with order (1- $\mu_n^{V}(\,1\,))$. If f ε X and

$$\left|\left|L_{n}(f)-f\right|\right|_{X} = o(1-\mu_{n}^{V}(1)) \qquad (n\to\infty),$$

then

$$f^{\wedge}(k) - f^{\wedge}(k)\mu_{n}^{\vee}(k) = o(1-\mu_{n}^{\vee}(1)) \qquad (n\rightarrow\infty).$$

In view of condition A this implies $f^{\Lambda}(k) = 0$, k = 1, 2, ..., and therefore f is a constant. The function $f_0(\cos \theta) = (\sin \frac{\theta}{2})^2$ is an example of a non-constant function which satisfies

$$\left|\left|L_{n}(f)-f\right|\right|_{X} = O(1-\mu_{n}^{V}(1)) \qquad (n\to\infty).$$

Hence $\{L_n\}$ is saturated with order $(1-\mu_n^V(1))$. The "trivial" subspace used in section 1.3 is here the space of constant functions.

We now whish to characterize the saturation class $F(X,L_n)$. An element $f \in X$ belongs to $F(X,L_n)$ if and only if

$$\left| \left| \int_{0}^{\pi} \left(T_{\phi} f(\cos \theta) - f(\cos \theta) \right) d\mu_{n}(\cos \phi) \right| \right|_{X} = O(1 - \mu_{n}^{V}(1)) \quad (n \to \infty),$$

or equivalently

$$\left| \left| \int_{0}^{\pi} \frac{\left(T_{\phi} f(\cos \theta) - f(\cos \theta) \right)}{\sin^{2} \frac{\phi}{2}} d\psi_{n}(\phi) \right| \right|_{X} = O(1)$$

$$(n \to \infty)$$

where

$$\mathrm{d}\psi_{\mathrm{n}}(\phi) = \frac{(\alpha+\beta+2)\,\sin^2\frac{\phi}{2}\,\mathrm{d}\mu_{\mathrm{n}}(\cos\,\phi)}{(\alpha+1)(1-\mu_{\mathrm{n}}^{\mathrm{V}}(1))}\;.$$

By (2.9)
$$\int_{0}^{\pi} d\psi_{n}(\phi) = 1, n = 1,2,... \text{ and consequently it is clear that}$$
 f ϵ F(X,L_n), if f ϵ Lip(2,X) (see (1.14)).

We still have to prove that $f \in F(X,L_n)$ implies $f \in Lip(2,X)$. If we denote by A the operator defined by (1.14), then we will first show that for $f \in D(A)$ satisfying

$$||\mathbf{f}-\mathbf{L}_{\mathbf{n}}(\mathbf{f})||_{\mathbf{X}} \leq \mathbf{M}(1-\mu_{\mathbf{n}}^{\mathbf{V}}(1)) \qquad (\mathbf{n}\rightarrow\infty),$$

the following inequality is valid:

(4.2)
$$||Af||_{X} \leq C(M+||f||_{X}).$$

Here C is a constant independent of f.

Since the measures ψ_n all have norm 1, there exists a subsequence $\{n_j\}$ and a measure ψ such that $\{\psi_n\}$ converges weak to ψ . By condition B and the weak convergence it follows that for each $\epsilon>0$

(4.3)
$$\int_{0}^{\varepsilon} d\psi = \lim_{j \to \infty} \int_{0}^{\varepsilon} d\psi_{n_{j}} \ge C_{B}.$$

We choose ϵ_0 so small that $\epsilon_0 \leq \frac{\pi}{2}$ and

$$(4.4) \qquad \int_{(0,\varepsilon_0)} d\psi \leq \frac{C_B}{S} \qquad \text{with } S > 2+2^{\beta+2}.$$

For $f \in D(A)$ satisfying (4.1) we have

$$\left|\left|\int_{0}^{\pi} \frac{T_{\phi}f - f}{\sin^{2}\frac{\phi}{2}} d\psi(\phi)\right|\right|_{X} \leq$$

$$\leq \lim_{j \to \infty} \left|\left|\int_{0}^{\pi} \frac{T_{\phi}f - f}{\sin^{2}\frac{\phi}{2}} d\psi_{n_{j}}(\phi)\right|\right| \leq M.$$

Hence,

$$(4.5) \qquad \left| \left| \int_{0}^{\varepsilon} 0 \frac{T_{\phi} f - f}{\sin^{2} \frac{\phi}{2}} d\psi(\phi) \right| \right|_{X} \leq M + \left| \left| \int_{\varepsilon_{0}}^{\pi} \frac{T_{\phi} f - f}{\sin^{2} \frac{\phi}{2}} d\psi(\phi) \right| \right|_{X} \leq M + \frac{2||f||_{X}}{\sin^{2} \frac{\varepsilon_{0}}{2}}$$

From (1.18) and (1.20) we know that $\frac{\mathbb{T}_{\phi}f - f}{\sin^2 \frac{\phi}{2}} \rightarrow -\frac{1}{\alpha + 1}$ Af in X if $\phi \rightarrow 0^+$. In virtue of (4.3) and (4.4)

$$(4.6) \qquad \left| \left| \int_{0}^{0} \frac{T_{\phi}f - f}{\sin^{2}\frac{\phi}{2}} d\psi(\phi) \right| \right|_{X} \ge$$

$$\geq \left(1 - \frac{1}{S}\right) C_{B} \frac{1}{\alpha + 1} \left| \left| Af \right| \right|_{X} - \left| \left| \int_{(0,\varepsilon)} \frac{T_{\phi}f - f}{\sin^{2}\frac{\phi}{2}} d\psi(\phi) \right| \right|_{X}.$$

Since by (1.17) and (1.21)

$$\left|\left|\frac{T_{\phi}f-f}{\sin^{2}\frac{\phi}{2}}\right|\right|_{X} \leq \frac{2^{\beta+1}}{\alpha+1}\left|\left|Af\right|\right|_{X}, \qquad 0 < \phi \leq \frac{\pi}{2},$$

we derive from (4.6) and (4.4)

$$| \int_{0}^{\varepsilon} \frac{T_{\phi}f - f}{\sin^{2}\frac{\phi}{2}} d\psi(\phi) | |_{X} \ge$$

$$\ge (1 - \frac{1}{S}) c_{B} \frac{1}{\alpha + 1} | |Af| |_{X} - \frac{c_{B}}{S} \frac{2^{\beta + 1}}{\alpha + 1} | |Af| |_{X} \ge$$

$$\ge \frac{1}{2(\alpha + 1)} c_{B} | |Af| |_{X},$$

as we have chosen S > $2+2^{\beta+2}$.

Hence (4.7) and (4.5) yield

$$||Af||_{X} \leq \frac{2(\alpha+1)}{C_{B}} (M + \frac{2||f||_{X}}{\sin^{2}\frac{\varepsilon_{0}}{2}}),$$

which establishes (4.2).

If we take an arbitrary element of $F(X,L_n)$ such that

$$||f-L_n(f)||_X \le M(1-\mu_n^{\vee}(1))$$
 (n=1,2,...),

then we study the convolution of f with a positive polynomial kernel K_m (for instance the de la Vallée-Poussin kernel (see section (5.1)) $f_m = f * K_m$, which clearly belongs to D(A). Then for f_m

$$||f_{m}-L_{n}(f_{m})||_{X} = ||f*K_{m}-f*K_{m}*d\mu_{n}||_{X} = ||(f-f*d\mu_{n})*K_{m}||_{X} \le ||f*d\mu_{n}||_{X} \le ||f*d\mu_{n}||_{X$$

$$\leq ||f-f*d\mu_n||_{X} \leq M(1-\mu_n^{V}(1))$$
 (n=1,2,...).

Since $||f_m||_X \le ||f||_X$ holds, it follows from (4.2) that

$$||\mathbf{Af_m}||_{\mathbf{X}} \leq \mathbf{C}(\mathbf{M} + ||\mathbf{f_m}||_{\mathbf{X}}) \leq \mathbf{C}(\mathbf{M} + ||\mathbf{f}||_{\mathbf{X}}).$$

Hence for $\phi > 0$ it follows from (1.17) and (1.21)

(4.8)
$$\left|\left|\frac{T_{\phi}f_{m}-f_{m}}{\phi^{2}}\right|\right|_{X} \leq \frac{2^{\beta-1}}{\alpha+1}\left|\left|Af_{m}\right|\right|_{X} \leq C_{1}(M+||f||_{X}), \quad (m=1,2,...).$$

If we take the limit as $m \rightarrow \infty$ in we get

$$\left|\left|\frac{\mathbb{T}_{\phi}^{\mathbf{f}-\mathbf{f}}}{\phi^{2}}\right|\right|_{X} \leq C_{1}(\mathbf{M}+\left|\left|\mathbf{f}\right|\right|_{X})$$

which is equivalent with $f \in \text{Lip}(2,X)$.

5. Applications

We will show in this section, that many of the classical approximation processes which have a positive kernel, satisfy the conditions of theorem 2.3. Since condition (a) of theorem 2.3 is essentially stronger than condition A of theorem 1.5, we may conclude by theorem 1.5, that these approximation processes are saturated with order $(1-\mu_n^{V}(1))$ and that their saturation class in Lip(2,X). For some of the examples given here, these results have already been obtained by different methods in Bavinck [2].

5.1. The de la Vallée-Poussin summability process

The de la Vallée-Poussin kernel is defined by

(5.1)
$$V_{N}(\cos \theta) = \omega_{0}^{(\alpha, \beta+N)}(\cos \frac{\theta}{2})^{2N}$$
 $N = 1, 2, ...,$

where $\omega_0^{(\alpha,\beta+N)}$ is given in (1.3).

The trigonometric moments of \boldsymbol{V}_{N} are very easy to calculate:

$$T(V_{N};2\sigma) = \frac{\omega_{0}^{(\alpha,\beta+N)}}{\omega_{0}^{(\alpha+\sigma,\beta+N)}}.$$

Hence

$$\lim_{N\to\infty} \frac{\mathrm{T}(\mathrm{V}_{\mathrm{N}}; 4)}{\mathrm{T}(\mathrm{V}_{\mathrm{N}}; 2)} = \lim_{N\to\infty} \frac{\omega_{\mathrm{0}}^{(\alpha+1,\beta+\mathrm{N})}}{\omega_{\mathrm{0}}^{(\alpha+2,\beta+\mathrm{N})}} = \lim_{N\to\infty} \frac{\alpha+2}{\mathrm{N}+\alpha+\beta+3} = 0.$$

By theorem 2.3 and theorem 1.5 we conclude that the summability process $V_N f(\cos \theta) = (f*V_N)(\cos \theta)$ is saturated with the order 1 - $V_N^{(1)}$, which by (2.9) is

$$1 - V_{N}^{\Lambda}(1) = \frac{(\alpha+\beta+2)}{(\alpha+1)} T(V_{N};2) = \frac{\alpha+\beta+2}{N+\alpha+\beta+2}.$$

The saturation class is Lip(2,X).

5.2 The Jackson kernel

We now direct our attention to the Jackson kernel

(5.2)
$$L_{n,r}(\theta) = \lambda_{n,r}^{-1} \left(\frac{\sin n \frac{\theta}{2}}{\sin \frac{\theta}{2}} \right)^{2r}$$
 (r and n positive integers, $r > \alpha+2$),

where

$$\lambda_{n,r} = \int_{0}^{\pi} \left(\frac{\sin n \frac{\theta}{2}}{\sin \frac{\theta}{2}} \right)^{2r} \rho^{(\alpha,\beta)}(\theta) d\theta \approx n^{2r-2\alpha-2}.$$

In order to find the saturation order and the saturation class, we show that the kernel (5.2) satisfies condition B of theorem 1.4. Using the well-known estimates $\frac{\theta}{\pi} \leq \sin\frac{\theta}{2} \leq \frac{\theta}{2}$ for $0 \leq \theta \leq \pi$ and $\frac{\sqrt{2}}{2} \leq \cos\frac{\theta}{2} \leq 1$ for $0 \leq \theta \leq \frac{\pi}{2}$ we have

$$\lambda_{n,r}.T(L_{n,r};2) = \int_{0}^{\pi} \frac{(\sin \frac{\theta}{2})^{2r}}{(\sin \frac{\theta}{2})^{2r-2\alpha-3}} (\cos \frac{\theta}{2})^{2\beta+1} d\theta \le$$

$$\leq \pi^{2r-2\alpha-3} (\frac{n}{2})^{2r} \int_{0}^{\pi} \theta^{2\alpha+3} d\theta + \pi^{2r-2\alpha-3} \int_{\frac{\pi}{n}}^{\pi} \theta^{2\alpha+3-2r} d\theta \le$$

$$\leq (\frac{\pi}{2})^{2r+1} \frac{n^{2r-2\alpha-4}}{\alpha+2} + \frac{n^{2r-2\alpha-4}}{2r-2\alpha-4} \pi =$$

$$= n^{2r-2\alpha-4} ((\frac{\pi}{2})^{2r+1} \frac{1}{\alpha+2} + \frac{\pi}{2r-2\alpha-4}).$$

On the other hand $(n \ge 2)$

$$\lambda_{n,r} \int_{0}^{\frac{\pi}{n}} \frac{(\sin n \frac{\theta}{2})^{r}}{(\sin \frac{\theta}{2})^{2r-2\alpha-3}} (\cos \frac{\theta}{2})^{2\beta+1} d\theta \ge (\frac{n}{\pi})^{2r} 2^{2r-2\alpha-3-\beta-\frac{1}{2}} \int_{0}^{\frac{\pi}{n}} e^{2\alpha+3} d\theta = (\frac{n}{\pi})^{2r-2\alpha-4} \frac{2^{2r-2\alpha-4-\beta-\frac{1}{2}}}{(\alpha+2)}.$$

If we choose ϵ > 0, then for n > $\frac{\pi}{\epsilon}$

$$\int_{0}^{\varepsilon} L_{n,r}(\theta) \rho^{(\alpha,\beta)}(\theta) d\theta \ge C_{B} \int_{0}^{\pi} L_{n,r}(\theta) \rho^{(\alpha,\beta)}(\theta) d\theta,$$

where

$$C_{B} = \frac{2^{2r-2\alpha-4-\beta-\frac{1}{2}}}{\pi^{2r-2\alpha-4}(\alpha+2)} \left(\left(\frac{\pi}{2} \right)^{2r+1} \frac{1}{\alpha+2} + \frac{\pi}{2r-2\alpha-4} \right)^{-1}.$$

Since $T(L_{n,r};2) \approx n^{-2}$ it follows from (2.9) and theorem 1.5 that the kernel $L_{n,r}(\theta)$ is saturated with order n^{-2} and that the saturation class is Lip(2,X).

5.3. The Weierstrass kernel

The Weierstrass kernel, defined by

(5.3)
$$W_{t}(\cos \theta) = \sum_{k=0}^{\infty} e^{-k(k+\alpha+\beta+1)t} \omega_{k}^{(\alpha,\beta)} R_{k}^{(\alpha,\beta)}(\cos \theta) \qquad (t > 0)$$

is a positive kernel (see Bavinck [2], section 5.8). If we take a sequence of numbers $\{t_n\}$ with $\lim_{n\to\infty} t_n = 0$, then it is easy to show that the sequence of convolution operators W_t satisfies condition (a) of theorem 2.3. In fact

$$\lim_{\substack{t_n \to 0^+ \\ 1 - e}} \frac{\frac{-k(k+\alpha+\beta+1)t}{n}}{\frac{-(\alpha+\beta+2)t}{n}} = \frac{k(k+\alpha+\beta+1)}{\alpha+\beta+2}.$$

Hence by theorem 1.5 the sequence W_t is saturated with order $-(\alpha+\beta+2)t$ n $\approx t_n \quad (n\to\infty)$ and the saturation class in Lip(2,X).

References

- [1] R.A. Askey and S. Wainger: A convolution structure for Jacobi series.

 Amer. J. Math. 91 (1969), 463-485.
- [2] H. Bavinck: Approximation processes for Fourier-Jacobi expansions.

 Math. Centrum Amsterdam, report TW 126 (1971).
- [3] H. Berens: Interpolationsmethoden zur Behandlung von Approximationsprozessen and Banachräumen. Lecture Notes in Math. 64, Springer, Berlin 1968.
- [4] R.A. DeVore: On a saturation theorem of Tureckii.

 To appear in Tôhoku Math. J.
- [5] G. Gasper: Positivity and the convolution structure for Jacobi series.
 Ann. of Math. 93 (1971), 112-118.
- [6] E. Görlich und E.L. Stark: Ueber beste Konstanten und asymptotische
 Entwicklungen positiver Faltungsintegrale und deren Zusammenhang mit dem Saturationsproblem.

 Jber. Deutsch. Math. Verein 72 (1970), 18-61.
- [7] J. Löfström and J. Peetre: Approximation theorems connected with generalized translations.

 Math. Ann. 181 (1969), 255-268.
- [8] E.L. Stark: Ueber trigonometirsche singuläre Faltungsintegrale mit Kernen endlicher Oszillation.

 Dissertation, Aachen (1970).
- [9] G. Szegő: Orthogonal polynomials.

 Amer. Math. Soc. Coll. Publ. 23 (1967), Providence, R.I.
- [10] A.H. Tureckii: On classes of saturation for certain methods of summation of Fourier series.

 Amer. Math. Soc. Trans. (2) 26 (1963), 263-272.

 (Uspehi Mat. Nauk 15 (1960) no. 6 (96), 149-156).